

 2

Contents

Introduction ... 3

Chef + Test Kitchen: Better Together ... 3

Start with Chef Workstation ... 3

Create and Test with Dokken .. 4

Create a Multi-platform Cowsay Recipe.. 5

Create a Simple Test to Verify the Node’s State .. 6

Create and Converge Cowsay with Test Kitchen .. 7

Verify the results ... 7

Clean Up After-the Fact .. 8

Try Test Kitchen Using Vagrant and AWS .. 9

Create an AWS IAM user .. 9

Set up AWS credentials .. 9

Create an AWS-specific kitchen.yml file .. 10

Next steps .. 12

Resources: .. 12

 3

Introduction
Test Kitchen, one of the free tools that ships with Chef Workstation, makes automation testing a snap by enabling

you to test your code and policies on a variety of enterprise-grade systems in containers, VMs and public cloud

instances.

As with any software development, it’s important to test your Chef code in environments that match your

development servers. These steps are sometimes ignored or given cursory attention because it can be time-

consuming to spin up test machines and then test configurations. In this guide, I’ll explain how to use Test Kitchen

with Docker, Vagrant (with VirtualBox) and in AWS with maximum speed and minimum pain. You can also use

Test Kitchen with Azure, Digital Ocean, Google and other cloud vendors; OpenStack; Hyper-V and others.

Chef + Test Kitchen: Better Together
Test Kitchen allows you to apply your Chef Infra cookbooks and recipes to a variety of machines and

immediately verify the results with Chef InSpec. Chef Infra configures systems the way you want, and Chef InSpec

ensures those systems are properly deployed and remain in the states you want.

For example, if you want to ensure NGINX is installed and ports 80 and 443 are open, Chef Infra will make that

happen and Chef InSpec will check the results. On one or two nodes, this is handy, but when you’re managing

thousands of different Linux (and Windows) machines, it’s a must – and allows you to perform tests in your Test

Kitchen development environment that produce the same results in production.

Start with Chef Workstation
To take full advantage of Test Kitchen, download Chef Workstation, the drop-in replacement for the now-

deprecated ChefDK. Chef Workstation includes chef, knife, kitchen, inspec, cookstyle and hab –

all the command-line tools you need to develop Chef solutions.

Download the package for your Linux, Mac or Windows laptop at https://downloads.chef.io/tools/workstation.

Once installed, execute the following commands from your CLI to allow Chef Workstation to use the embedded

Ruby and other packages it needs to run. For example, on Linux or Mac:

$ echo 'eval "$(chef shell-init bash)"' >> /home/$USER/.bash_profile

$ echo 'export PATH="/opt/chef-workstation/embedded/bin:$PATH"' >>

/home/$USER/.configuration_file

The rest of this guide assumes you have generated a local Chef Repo with chef generate repo <my-

repo>. Within that repo directory is a cookbooks folder, where you’ll create your examples.

$ cd ~/chef-repo/cookbooks

https://downloads.chef.io/tools/workstation

 4

Create and Test with Dokken
Use the chef generate cookbook command to create a new cookbook, adding the -k dokken flag.

This will automatically generate a kitchen.yml file as part of your cookbook that can be used to create and

run special Docker containers for testing. The kitchen.yml file tells Test Kitchen what to do, from setting the

target-system driver, provisioner, transport and InSpec verifier. It also contains entries for your target platforms

(CentOS, RedHat, SUSE, Ubuntu, etc.) and suites that can run additional cookbook recipes or InSpec verification

tests.

The Policyfile.rb is automatically created when you generate your cookbook, and includes the run list –

the recipe or recipes intended to run on your nodes.

name 'cowsay'

default_source :supermarket

run_list 'cowsay::default'

cookbook 'cowsay', path: '.'

In the example in this Chef Guide, you’ll create a simple cookbook that installs Cowsay and shows you each

node’s IP address in an ASCII image whenever you login:

< 172.31.22.66 >

 \

 \

 .--.

 |o_o |

 |:_/ |

 // \ \

 (| |)

 /'_ _/`\

 ___)=(___/

To get started, create the Cowsay cookbook, adding the -k flag to generate the Dokken kitchen.yml file:

$ cd ~/chef-repo/cookbooks

$ chef generate repo cowsay -k dokken

This command creates a default kitchen.yml file with two test platforms, Ubuntu 20.04 and CentOS 8. Let’s

change the second platform entry to test on CentOS 7. You can also enter different or additional platforms to suit

your needs:

driver:

 name: dokken

 use_sudo: false

 privileged: true

provisioner:

 name: dokken

transport:

 name: dokken

https://github.com/test-kitchen/dokken-images

 5

verifier:

 name: inspec

platforms:

 - name: ubuntu-20.04

 driver:

 image: dokken/ubuntu-20.04

 pid_one_command: /bin/systemd

 intermediate_instructions:

 - RUN /usr/bin/apt-get update

 - name: centos-7

 driver:

 image: dokken/centos-7

 pid_one_command: /usr/lib/systemd/system

suites:

 - name: default

 verifier:

 inspec_tests:

 - test/integration/default

Dokken uses special containers that add back in some of the capabilities common to full virtual machines, such as

systemd. Though you have not created a recipe file, you can run kitchen list to see the Docker nodes

Test Kitchen intended to create for you:

Instance Driver Provisioner Verifier Transport Last Action Last Error

default-ubuntu-2004 Dokken Inspec Dokken <Not Created> <None>

default-centos-7 Dokken Inspec Dokken <Not Created> <None>

You can use the Instance names later to log in to your Docker container nodes.

Create a Multi-platform Cowsay Recipe
Since you’re looking to test this small cookbook on different platforms, you’ll create a recipe that works slightly

differently on each. Ubuntu 20.04 is part of the Debian family, and CentOS 7 is part of the Red Hat Enterprise

Linux (RHEL) family, so you’ll use the built-in Chef platform_family resource to ensure the installation works

on both despite their differences.

CentOS needs the epel-release repository, which includes Cowsay, so using

platform_family?('rhel')will add that repo for the CentOS 7 node, but not for the Ubuntu 20.04

node. Next, use the package resource to install Cowsay (Chef knows how to use apt and yum to do that), and

then have Chef write a line to the profile that will make Cowsay show the login graphic with the IP address.

Finally, the recipe uses the bash resource to create a symbolic link to the cowsay binary, which is located in

different places on Ubuntu and CentOS:

 6

On RHEL platforms, add the epel-release repo

if platform_family?('rhel')

 yum_package 'epel-release'

elsif platform_family?('debian')

 apt_update 'update'

end

Install the cowsay package on all platforms

package 'cowsay'

Have cowsay show the IP address on login for all platforms

bash 'run_cowsay' do

 code <<-EOS

 echo "hostname -I | /usr/bin/cowsay -f tux" >> /etc/profile

 EOS

 not_if 'grep -q cowsay /etc/profile'

end

On Debian platforms, create a symbolic link to cowsay

if platform_family?('debian')

 link '/usr/bin/cowsay' do

 to '/usr/games/cowsay'

 end

end

Note that the bash resource includes the not_if option, which ensures the hostname -I command is

written to the /etc/profile file just once. Without this, a new line will be added to the file each time the

Chef client runs.

Create a Simple Test to Verify the Node’s State
With the recipe set, create a simple ./test/integration/default/default_test.rb file Test

Kitchen will use to verify the state of your nodes. These are simple tests to ensure Cowsay is installed and the

/etc/profile file contains the command you added:

describe package('cowsay') do

 it { should be_installed }

end

describe file('/etc/profile') do

 its('content') { should match /cowsay/ }

end

There are no platform differences here. The recipe took care of them for you. To do a full InSpec test, you can

separately convert these simple tests into an InSpec profile, which would look like this:

control 'cowsay-installed' do

 impact 0.7

 title 'Ensure cowsay is installed'

 describe package('cowsay') do

 it { should be_installed }

 end

end

 7

control 'cowsay-profile' do

 impact 0.7

 title 'Ensure cowsay runs at login'

 describe file(/etc/profile) do

 its('content') { should match /cowsay/ }

 end

end

With the recipe and simple tests complete, you’re ready to use Test Kitchen to run, converge and verify the

content of your nodes. Since this is running in Docker, you’ll need docker.io installed on your system.

Create and Converge Cowsay with Test Kitchen
Test Kitchen can do each step separately, starting with creating the raw Docker OS image containers, Ubuntu

20.04 and CentOS 7 in this example:

$ kitchen create

The speed of the creation will vary based on whether you already have the images available locally for Docker

to use. When the creation is done, run kitchen list again to see that the two systems are indeed available

and running. You can also run docker ps to see the running containers.

Instance Driver Provisioner Verifier Transport Last Action Last Error

default-ubuntu-2004 Dokken Dokken Inspec Dokken Created <None>

default-centos-7 Dokken Dokken Inspec Dokken Created <None>

Next, deploy your code to these container nodes with the converge command. Converging applies your code

to your container nodes using the Chef Infra client.

$ kitchen converge

This will take a minute or so, and you’ll see output in the terminal that shows the steps Chef is applying from the

recipe/default.rb file. You’re not asking Chef to do much work here, so this will run pretty quickly. If you

want to converge just one node (and not both), you can use the instance name with the command, such as:

$ kitchen converge default-centos-7

Verify the results
When the converge completes, your test node containers are up and running and should now have Cowsay

installed, and the profile should be edited the way you want. Run the following:

$ kitchen verify

This fires the Chef client on each node and the results appear in the terminal, repeated for each platform:

 System Package cowsay

 is expected to be installed

 File /etc/profile

 content is expected to match /cowsay/

This is also a good time to check that the profile on each node is edited and working as expected. Use kitchen

login <instance-name> to confirm the results:

$ kitchen login default-ubuntu-2004

$ kitchen login default-centos-7

 8

If you have just a single node, you can shortcut this command with just $ kitchen login.

Clean Up After-the Fact
To delete your images and clean up your Docker environment, run the following to terminate and remove your

containers:

$ kitchen destroy

If you want to skip some of the keystrokes, you can simply run kitchen test to run all these steps at once. This

simple command destroys any existing instances or containers, creates new ones, converges your code, verifies

the results, and destroys them.

 9

Try Test Kitchen Using Vagrant and AWS
Test Kitchen includes drivers for a number of system types, including Vagrant and AWS. The Vagrant driver

enables you to spin up test nodes in a desktop virtualization environment like VirtualBox. Vagrant is the default

driver, so if you created your Cowsay cookbook without the -k dokken flag, you would get a kitchen.yml

file that looks like this:

driver:

 name: vagrant

provisioner:

 name: chef_zero

verifier:

 name: inspec

platforms:

 - name: ubuntu-20.04

 - name: centos-8

suites:

 - name: default

 verifier:

 inspec_tests:

 - test/integration/default

 attributes:

To run this Cowsay example using VirtualBox, just change the default centos-8 platform entry to centos-7 and

run it. No need to make any changes to your recipe or test files.

The same is true if you want to run your test nodes in the public cloud, such as AWS or Azure. In the next step,

you’ll create a kitchen.yml file that includes a few details not present in either the Dokken (Docker) or

Vagrant versions, namely your AWS credentials.

In order to make this work, you’ll need an existing AWS account, AWS IAM credentials, and have the aws-cli

client installed on your laptop. The AWS CLI enables simple, secure connections between your laptop and the

AWS cloud.

Create an AWS IAM user
To create an AWS IAM user, visit the AWS dashboard, click on Users and then Add User. Create a user with

Programmatic access and add or create a group with PowerUserAccess. When, prompted, download the .csv

credentials file. It stores your Access key ID and Secret access key you’ll need in the next step.

Set up AWS credentials
Back on your laptop, run aws configure to set the various credentials. When prompted, enter your AWS IAM

Access key ID and Secret access key and enter a default AWS region where your test nodes will be created,

such as us-east-1. You’ll also need to look up availability zones for your region, such as a, b, etc. with the

following command:

$ aws ec2 describe-availability-zones --region us-east-1

You should also have an AWS ssh key pair handy. If you haven’t already, create one for the AWS region in

which you’re working, such as us-east-1. You’ll be able to use this pair to shell into your test nodes.

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://console.aws.amazon.com/iam
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#CreateKeyPair:

10

Create an AWS-specific kitchen.yml file
With the connection between your laptop and AWS set, you can now edit your Cowsay kitchen.yml file to

work with it.

You’ll notice a couple key differences, starting with the driver, which is ec2, to work with AWS. Next, add an

aws_ssh_key_id value that matches the name of your ssh key pair. The region and availability zone should

match what you configured with aws-cli. The instance_type is the type of AWS machine on which you want

to test. This example uses a t2.micro instance, which is small and available at low cost.

In the transport section of your kitchen.yml file, add an ssh_key entry and the path to your key’s .cer or

.pem file. Ensure the permissions on the file are 600 for security purposes.

The verifier section uses inspec, and you may need to install a Chef Ruby gem to make this work. Just run this

command as a regular user:

$ chef gem install kitchen-verifier-awspec

Since you’re running both Ubuntu and CentOS instances, you also need to add different default usernames for

each. The default for Ubuntu is ubuntu and the default for CentOS is centos. These can be easily set in the

platforms section of your kitchen.yml file using both the box and transport.username options.

Your complete kitchen.yml file will look something like this:

driver:

 name: ec2

 aws_ssh_key_id: my-chef-aws

 region: us-east-1

 availability_zone: a

 instance_type: t2.micro

 associate_public_ip: true

 interface: dns

transport:

 ssh_key: /aws/my-chef-aws.cer

 connection_timeout: 10

 connection_retries: 5

verifier:

 name: inspec

platforms:

- name: ubuntu-20.04

driver:

 box: ubuntu-20.04

 transport.username: ubuntu

- name: centos-7

driver:

 box: centos-7

 transport.username: centos

suites:

- name: default

verifier:

 inspec_tests:

 11

 - test/integration/default

 attributes:

Do an initial test of this file with the following:

$ kitchen list

When you’re satisfied, run the following as you did for the Dokken example. All the commands are the same as

before:

$ kitchen create

$ kitchen converge

$ kitchen verify

Once all the steps are complete, ssh into your AWS instances by running the same Test Kitchen login command

you used for Vagrant or Dokken:

$ kitchen login default-centos-7

< 172.31.23.133 >

 \

 \

 .--.

 |o_o |

 |:_/ |

 // \ \

 (| |)

 /'_ _/`\

 ___)=(___/

[centos@ip-172-31-23-133 ~]$

Success! Before issuing a kitchen destroy command, try making some changes to your recipe and re-

running kitchen converge to see the results. Each converge will update the contents of your test instances

and kitchen verify will confirm them.

12

Next Steps
See all the capabilities of Test Kitchen and learn more about Chef Infra and Chef InSpec and more by visiting

chef.io today.

Resources:
Test Kitchen documentation – https://docs.chef.io/workstation/kitchen/

Chef Infra Best Practices eBook - https://d1l5pp53ux74mz.cloudfront.net/docs/default-source/ebook/chef-

infra-automation-best-practices.pdf

Chef Twitch Stream - https://www.twitch.tv/chefsoftware

Chef Infra – https://www.chef.io/products/chef-infra

Chef InSpec – https://www.chef.io/products/chef-inspec

For more information on purchasing Chef products, please contact sales@chef.io.

ABOUT CHEF AND PROGESS
Progress (NASDAQ: PRGS) provides the best products to develop, deploy and manage high-impact business

applications. Acquired in October 2020, Chef extends Progress offerings in DevOps and DevSecOps, with

market-leading, modern infrastructure, compliance, and application by automation. With Progress, you can

accelerate the creation and delivery of strategic business applications, automate the process which you configure,

deploy and scale those apps, and make your critical data and content more accessible and secure— leading to

competitive differentiation and business success. Over 1,700 independent software vendors, 100,000+

enterprise customers, and a three-million-strong developer community rely on Progress to power their

applications. Learn about Progress at www.progress.com or +1-800-477-6473.

https://www.chef.io

https://chef.io/
https://docs.chef.io/workstation/kitchen/
https://d1l5pp53ux74mz.cloudfront.net/docs/default-source/ebook/chef-infra-automation-best-practices.pdf
https://d1l5pp53ux74mz.cloudfront.net/docs/default-source/ebook/chef-infra-automation-best-practices.pdf
https://www.twitch.tv/chefsoftware
https://www.chef.io/products/chef-infra
https://www.chef.io/products/chef-inspec
mailto:sales@chef.io
http://www.chef.io/
https://www.chef.io/

	Introduction
	Chef + Test Kitchen: Better Together
	Start with Chef Workstation
	Create and Test with Dokken
	Create a Multi-platform Cowsay Recipe
	Create a Simple Test to Verify the Node’s State
	Create and Converge Cowsay with Test Kitchen
	Verify the results
	Clean Up After-the Fact

	Try Test Kitchen Using Vagrant and AWS
	Create an AWS IAM user
	Set up AWS credentials
	Create an AWS-specific kitchen.yml file

	Next Steps
	Resources:

